

Enabling Industry 4.0 Skills in Textile SMEs

Internet of Things (IoT)

Agreement number: 2023-1-DE02-KA220-VET-000154009

Developed by: Andrea Maria Galante – Official Spanish Chamber of Commerce in Belgium and Luxembourg (CAMARABELUX)

**Co-funded by
the European Union**

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.

This work is licensed under a CC BY 4.0 DEED
Attribution 4.0 International License

TABLE OF CONTENTS

1.	2
1.1.3	
1.2.4	
1.3.9	
1.4.9	
2.	10
2.1.10	
2.2.11	
2.3.12	
2.4.15	
2.5.16	
2.6.20	
2.7.21	
3.	22
3.1.23	
Fabrication techniques	24
Integrating Technology into Apparel	24
Applications	26
3.2.28	
3.3.29	
4.	30
4.1.31	
Operational challenges	32
Broader challenges	33
4.2.33	

1. Introduction of Internet of Things (IoT) and main components

The Internet of Things (IoT) has become a **key driver** in the transformation of the productive sector towards **Industry 4.0** across different industries. This is achieved through **networks of interconnected devices, sensors, and software** that monitor and optimize production processes.

Furthermore, when integrated with **cloud computing**, IoT systems can **analyze vast quantities of data**, generate **actionable insights**, and ensure **flexibility** in adapting to evolving market demands. Together, these technologies equip businesses of all sizes with the tools to innovate and succeed in a competitive global market.

As a cornerstone of modern society and the **latest technological revolution**, the **Internet of Things (IoT)** has been, and continues to be, a transformative force shaping the future of computing and communications, driven by ongoing advancements across several critical fields.

1.1. Definition

The main basis and technologies were **initially developed slowly at the end of the 1980s and 1990s** and **progressed consistently during the first decade of the 21st century**, experiencing a **rapid development starting in 2010**. The **accelerated expansion of IoT** has made it more accessible for use in the **productive sector**, as well as for **improving quality of life**.

There is no unique definition available for IoT acceptable by the world community of users. Kevin Ashton, who introduced the term, defined it as the **system of interconnected physical objects via the Internet**, equipped with **sensors, software, and other technologies**, enabling them to **collect and exchange data without direct human intervention**.

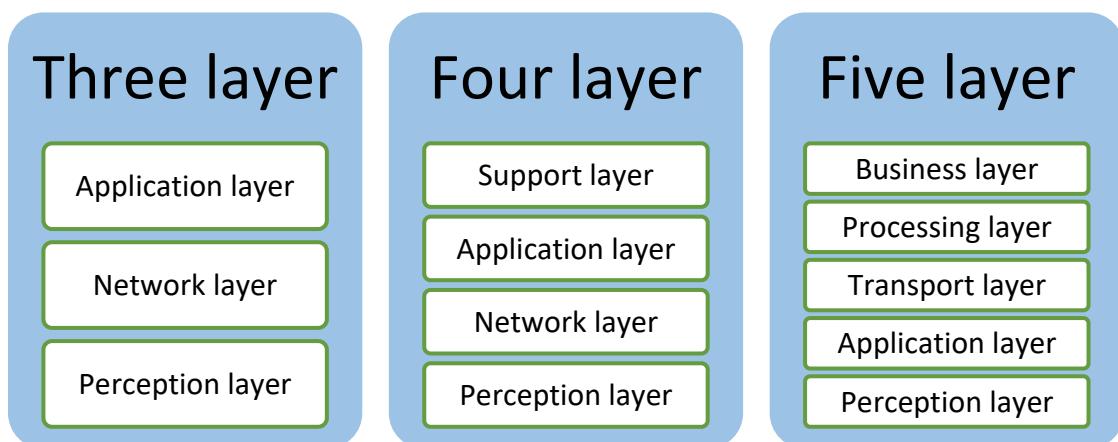
Depending on the perspective from which IoT is analyzed, its definitions can vary significantly:

- **Functional perspective:** IoT is understood as an ecosystem that collects and processes real-time data to optimize processes and enable informed decision-making.
- **Component-based perspective:** IoT is described as a network of sensors, connected devices, and communication systems working together to enable intelligent automation.
- **Practical applications perspective:** IoT is defined as the integration of physical objects into the digital environment, enabling innovative solutions such as smart cities, connected homes, and advanced manufacturing.

In essence, what the definitions have in common is the idea of differentiating between a **first version of the Internet**, focused on **data created by people**, and a **next version** where **data can also be generated by things**. Ultimately, a good definition could be understanding it as a comprehensive network/system that connects “things” and devices to the internet with the capacity to auto-organize, share information, data and resources, reacting and acting in face of situations and changes in the environment; a global network which **allows communication between human-to-human, human-to-things and things-to-things**.

1.2. Basic components of IoT and architecture: Smart Textile System

Components: sensors, actuators, connectivity...


The **basic components of IoT (Internet of Things)** are the fundamental building blocks that enable the functioning of an IoT ecosystem. Each component plays a critical role in **connecting devices, collecting and processing data, and enabling communication** between machines and users. The **Internet of Things (IoT)** is built upon a set of interconnected components that ensure seamless communication, data collection, and analysis. These components include **devices** (comprising sensors, processors, and communication units), **communication protocols** or **web services** (which facilitate data transfer over networks), **edge devices or gateways** (for local data processing and transmission), **data transmission layers**, and **platforms for data storage and processing** (such as cloud computing).

One of the main challenges with IoT is its vastness and the broad scope of its applications, which has led to the absence of a universally accepted, uniform architecture. **IoT architecture** refers to the structured framework that organizes the components, processes, and interactions within an IoT system. It provides a systematic way to understand how devices, data, and networks work together to enable seamless communication and functionality. One **common approach to understanding this architecture is to define it in layers**, where each layer integrates specific components of IoT and represents a distinct function or role within the system.

The evolution of IoT technology has prompted the **reformulation of concepts** and the introduction of additional layers. This has sparked discussions among researchers regarding the **optimal number of layers**, with some advocating for a **three-layer structure**, while others propose **four** or even **five layers**.

Figure 1: Different structures of layers

This architecture, across the three models, shares some layers while distinguishing others. Business Layer, Processing Layer, and Transport Layer layers are used in the 5-layer architecture, unlike the 3- and 4-layer Architecture. The 5-layer architecture, however, is the most popular and generally accepted. Along with the definitions, some examples of its applications within the textile sector would be provided for further comprehension. Its relation with Industry 4.0 and applications on the textile sector (from manufacturing to supply chain management and wearables) would be developed in the next sections.

1. PERCEPTION LAYER

This layer, also known as the Sensor Layer, is responsible for **recognizing objects** and **collecting data** from the physical environment through **sensors and actuators**. There are numerous types of sensors that can be attached to various items to gather data. The application must select the appropriate sensors. These sensors can capture temperature, humidity, heat, movement, vibration, and other data.

Table 1: Components and Examples of Perception layer in the Textile Sector

Component and definition	Example in the textile sector
Sensors: Devices that detect physical or environmental changes, such as temperature, humidity, pressure, motion, vibration, light, or sound.	Sensors monitoring environmental conditions in textile production machines
Actuators: Devices that perform actions based on commands received from the system, such as turning on a light, opening a valve, or adjusting a motor.	Automating fabric tension adjustments on weaving machines
RFID Tags and Readers: Used for identification and tracking of objects in real-time by transmitting data through radio waves.	Tracking raw material inventory and finished goods in warehouses
Cameras and Visual Sensors: Devices that capture visual data for analysis, monitoring, and security purposes.	Identifying defects in textile patterns during quality inspections
IoT Edge Devices: Smart devices that combine sensors and initial data processing capabilities before transmitting information to the next layer	Processing real-time data from sewing machines to optimize performance in textile workshops

2. NETWORK LAYER

The **Network Layer** serves as the bridge between the **Perception Layer** and the **Application Layer**, ensuring the transmission of data gathered from physical objects to the appropriate systems for further processing. This is achieved using various communication technologies, both wired and wireless. However, because it connects devices and other network components, the **Network Layer** is particularly vulnerable to attacks.

Table 2: Components and Examples of Network layer in the Textile Sector

Component and definition	Example in the textile sector
Wired Communication Technologies: Includes Ethernet and fiber optics, offering	Using Ethernet in textile retail warehouses to ensure stable barcode scanner connectivity for inventory management

high-speed and stable connections for data transmission.	
Wireless Communication Technologies: Includes Wi-Fi, Zigbee, Bluetooth, and cellular networks (4G/5G), providing flexible connectivity for IoT devices.	Leveraging Wi-Fi to enable real-time stock updates between textile retail stores and central inventory systems.
Protocols: Facilitates reliable data transmission through protocols like MQTT, CoAP, and HTTP, ensuring devices can communicate effectively across the network.	Applying MQTT for efficient data exchange between smart shelves in textile stores and inventory management platforms
Gateways and Routers: Serve as intermediaries that aggregate, route, and transmit data between devices and higher layers of the IoT architecture.	Deploying a gateway to aggregate sensor data from multiple textile dyeing machines and send it to cloud analytics platforms

3. APPLICATION LAYER

The **Application Layer** is responsible for the operation and functionality of all IoT applications. This layer provides services to applications, ensuring the seamless interaction between users and the processed data. It serves as the interface where actionable insights generated by the system are delivered to the end users, enabling decision-making and automation.

Table 3: Components and Examples of Application layer in the Textile Sector

Component and definition	Example in the textile sector
Application Software: The programs and tools that allow users to interact with IoT systems, such as dashboards, mobile apps, and web interfaces.	Using a mobile app to monitor and control textile production machines remotely in a factory
Visualization Tools: Platforms for presenting data in an easily understandable format, like charts, graphs, and real-time alerts.	Employing dashboards to display real-time graphs of fabric stock levels in textile logistics centers
APIs (Application Programming Interfaces): Enable communication between IoT devices and external systems, facilitating integration with other applications.	Integrating smart clothing with fitness tracking apps to provide user activity data in textile retail products

4. SUPPORT LAYER

The **Support Layer** is primarily required for **security purposes**, acting as a safeguard between the **Perception Layer** and the **Network Layer** to mitigate additional risks that arise when information is transferred directly. This layer verifies the authenticity of information, ensuring it originates from legitimate users, and securely transmits it to the Network Layer. The transmission at this layer can utilize both wired and wireless technologies.

Table 4: Components and Examples of Support layer in the Textile Sector

Component and definition	Example in the textile sector
Authentication Systems: Tools to verify that the information comes from legitimate users, ensuring secure communication.	Implementing biometric access control for employees managing IoT-enabled textile inventory systems

Security Protocols: Encryption and verification mechanisms to protect data as it moves between layers.	Using encryption protocols to secure communication between smart weaving machines and the factory's IoT platform
Transmission Systems: Wired (Ethernet, fiber optics) and wireless (Wi-Fi, Zigbee) technologies to facilitate the secure transfer of information.	Employing Zigbee for secure wireless communication between temperature sensors and central systems in textile storage facilities.

5. PROCESSING LAYER

The **Processing Layer** plays a critical role in eliminating unnecessary information from the **Transport Layer**, reducing the burden of managing large volumes of data and improving the efficiency of IoT systems. By streamlining data before it moves to higher layers, this layer ensures that only relevant and actionable information is processed, minimizing the challenges associated with big data.

Table 5: Components and Examples of Processing layer in the Textile Sector

Component and definition	Example in the textile sector
Data Filtering Tools: Systems that identify and remove irrelevant or redundant information before processing.	Using filtering algorithms to eliminate redundant sensor readings from textile manufacturing machines before analysis
Big Data Analytics Platforms: Tools that analyze large volumes of data to identify patterns and trends, enabling actionable insights.	Analyzing customer purchase patterns in textile retail to optimize product placement and inventory management
Processing Units: Hardware or virtual machines that manage and streamline data, such as edge computing devices or cloud-based systems.	Deploying edge devices to process real-time data from weaving machines, reducing latency in textile production monitoring

6. TRANSPORT LAYER

The **Transport Layer** serves as the intermediary between the **Perception Layer** and the **Processing Layer**, ensuring seamless communication and data transfer between these layers. Its primary role is to carry out the communication tasks necessary to transmit data collected by IoT devices in the Perception Layer to the Processing Layer for further analysis and action.

Table 6: Components and Examples of Transport layer in the Textile Sector

Component and definition	Example in the textile sector
Communication Protocols: Protocols like MQTT, CoAP, and HTTP that ensure reliable and efficient data transfer between layers.	Using MQTT to transmit loom performance data to the cloud for predictive maintenance in textile factories
Transmission Technologies: Wired (e.g., Ethernet, fiber optics) and wireless (e.g., Wi-Fi, 4G/5G, Zigbee) systems facilitating data communication.	Employing 4G/5G to enable real-time tracking of textile shipments during transit.
Gateways: Devices that aggregate and transmit data from sensors to the next layer,	Installing gateways in retail stores to collect and send RFID tag data from garments to inventory management systems

acting as bridges between IoT devices and processing systems.	
---	--

7. THE BUSINESS LAYER

The **Business Layer** serves as the administrative and decision-making hub of the entire IoT system, ensuring proper management of user privacy and system operations. This layer interprets the data processed by lower layers to support strategic decisions and manage IoT applications in alignment with business goals. Most security issues in this layer arise from vulnerabilities inherited from the layer below.

Table 7: Components and Examples of Business layer in the Textile Sector

Component and definition	Example in the textile sector
Decision-Making Tools: Systems that analyze processed data to support operational and strategic decisions.	Using AI-driven tools to optimize textile production schedules based on real-time machine performance data
Business Analytics Platforms: Tools that provide insights into IoT performance and generate reports for optimization.	Generating reports on supply chain efficiency for textile logistics using IoT-collected data.
Privacy Management Systems: Mechanisms that protect user privacy and ensure compliance with data protection regulations.	Implementing GDPR-compliant systems to secure customer data from smart clothing in textile retail.

Cloud Computing

The vast amount of data generated within IoT systems, collected and transmitted across its multiple layers, requires **efficient storage, processing, and analysis**. Selecting the appropriate **communication protocol** is crucial for effective data transport and device interaction, as it must align with the devices' characteristics and the type of data being transmitted. However, raw data holds little value without proper **processing and analysis**.

This highlights the role of **Cloud Computing**, a fundamental component of IoT, which provides **scalable and accessible resources** for data processing, storage, and analysis. Cloud Computing supports these functions, particularly at the **processing and support layers**, enabling the transformation of raw data into **actionable insights** while ensuring seamless communication between devices, networks, and applications across the IoT architecture.

Additionally, Cloud Computing allows access to a **common pool of configurable computing resources** anytime, anywhere. By leveraging **machine learning methods**, actionable insights can be extracted for **technical and commercial purposes**, driving **innovation and efficiency** in IoT applications.

There are different **types of cloud deployment models**: public cloud (internet-based services), private cloud (exclusive use by one organization), hybrid cloud (combination of public and private), and multi-cloud (use of multiple cloud providers).

Cloud service models

- **Infrastructure as a Service (IaaS)** → Provides **virtual infrastructure**, such as servers and networks. This includes managing the operating system, applications, and data.
- **Platform as a Service (PaaS)** → Delivers a **complete platform** for developers with no need to manage the underlying infrastructure.
- **Software as a Service (SaaS)** → Offers **ready-to-use software** over the internet, such as email or collaboration applications.
- **Function as a Service (FaaS)** → Allows to run **small code functions** without worrying about servers. They execute automatically in response to events.

Some **examples** of the functioning of cloud computing include supply chain management and industrial machine control in the industry sector; consumer behavior analysis and real-time inventory management in commerce; patient monitoring and access to electronic medical records in the health sector; and smart home applications and streaming services in daily life.

1.3. Conclusions

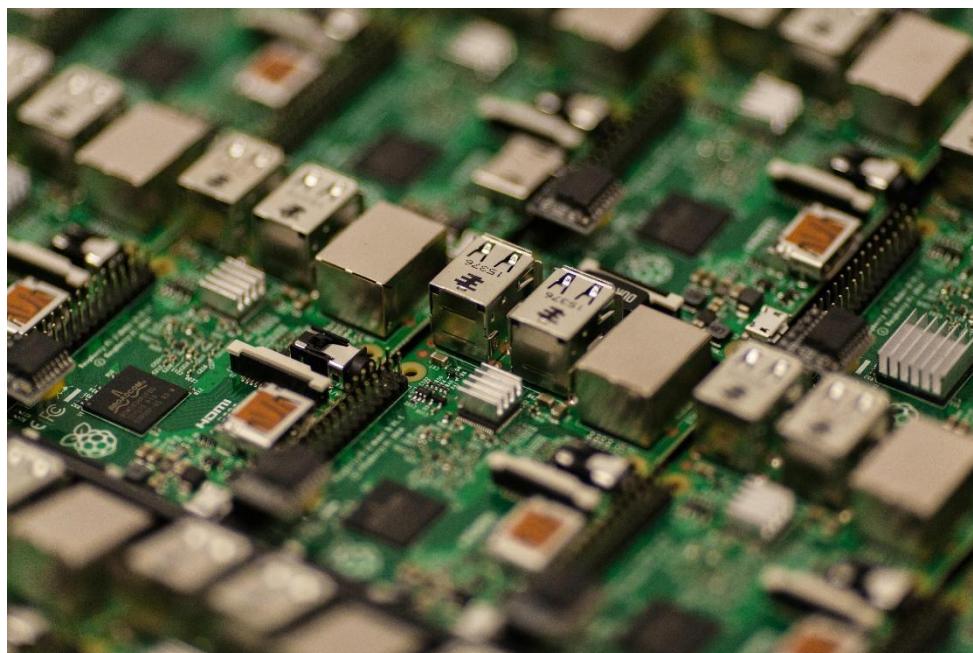
This first part of the course has laid the foundation for understanding the **Internet of Things (IoT)**, highlighting its importance as a key technology in the digital transformation of various industries, including textiles. Through the analysis of IoT components and architecture, it has provided a clear view of how devices, networks, and applications work together to collect, process, and utilize data. Additionally, the essential components and security challenges associated with each category have been explored, offering a comprehensive understanding of IoT's technical framework. This knowledge serves as a starting point for delving into specific IoT applications in textiles and industrial processes in upcoming modules, bridging theoretical concepts with practical cases.

1.4. References

Wang, J., Lim, M. K., Wang, C., & Tseng, M. L. (2021). The evolution of the Internet of Things (IoT) over the past 20 years. *Computers & Industrial Engineering*, 155, 107174. <https://www.sciencedirect.com/science/article/abs/pii/S0360835221000784>

Ashton, K. (2009). That 'internet of things' thing. *RFID journal*, 22(7), 97-114. <https://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf>

Madakam, S., Ramaswamy, R., & Tripathi, S. (2015). Internet of Things (IoT): A literature review. *Journal of Computer and Communications*, 3(5), 164-173. <https://www.scirp.org/journal/paperinformation?paperid=56616>


Yıldırım, M., Demiroğlu, U., & Şenol, B. (2021). An in-depth exam of iot, iot core components, iot layers, and attack types. *Avrupa Bilim ve Teknoloji Dergisi*, (28), 665-669. <https://dergipark.org.tr/en/pub/ejosat/article/1010023>

2. IoT in the textile industry and the Internet of Smart Clothing

The integration of **IoT technologies** in the textile industry bridges the gap between traditional processes and advanced, data-driven systems.

By leveraging components like sensors, actuators, and connectivity technologies, IoT enables the seamless flow of information across all stages of the textile value chain. These components form the foundation for innovative **applications in manufacturing, logistics, and commerce**, driving efficiency, sustainability, and personalization in the textile and apparel sector.

Furthermore, IoT can also be applied to garments, giving rise to the concept of **Smart Clothing**, Smart Textiles, or as part of the ongoing technological evolution. By embedding advanced IoT technologies into textiles, smart clothing enables real-time interaction with the wearer and their surroundings, driving innovation in areas like health monitoring, sports performance, and environmental adaptability.

2.1. IoT and its relation to Industry 4.0 and connected ecosystems

The **Fourth Industrial Revolution**, commonly known as **Industry 4.0** refers to the transformation of industries through the integration of **advanced digital technologies** to enable smarter, more efficient, and automated production processes. Beyond factory automation, **IoT** enables objects and machines to become “**users**” within internet networks, accessing and sharing data—a critical foundation for the creation of **Cyber-Physical Systems (CPS)**.

A further step in the comprehension of connected ecosystems in the productive sector implies differentiating between IoT and CPS, even though both systems are significantly interconnected. While IoT focuses on connectivity and data transmission between physical devices, allowing communication between systems, machines and people, but without making own decisions or directly controlling the devices, the **CPS** take this to a next level by integrating real-time **data processing with physical operations**. CPS use sensors, connected devices, and advanced algorithms to **monitor and control processes**, enabling automation that optimizes production,

anticipates failures, and adapts to changing conditions. CPS are the building blocks that turn raw IoT data into actionable insights, driving intelligent decision-making at the system level.

A specialized application of CPS in industrial settings is the **Cyber-Physical Production System (CPPS)**. CPPS allows machines and production systems to **self-optimize** and **reconfigure** their behavior in response to changes in orders or operating conditions. By storing and leveraging knowledge gained from experience, CPPS enhance flexibility and efficiency, enabling adaptive, autonomous production processes. For instance, in a smart factory, CPPS can adjust production lines to meet customized orders while minimizing downtime and anticipating potential failures.

In essence, **IoT** provides the necessary **connectivity** for data exchange and acts as an enabling technology for **CPS** operations, which can transform this data into actionable control over physical processes. Furthermore, **CPPS** apply these capabilities to industrial production environments, enabling factories to become self-optimizing and adaptive. Together, these technologies form the backbone of Industry 4.0, fostering intelligent, flexible, and highly efficient manufacturing systems that can respond dynamically to market demands.

However, this relationship between IoT and Industry 4.0 is not limited to the **manufacturing and productive sector**. Its influence extends to other fields such as **logistics**, where it optimizes transportation and storage, or **commerce**, where it fosters personalized customer experiences through data analysis.

Table 8: Applications of IoT in different sectors

In Manufacturing: IoT-enabled factories enhance efficiency, productivity, and quality by automating processes and using real-time data for predictive maintenance and quality control.	Examples of application: machine monitoring, predictive maintenance, quality control or smart products development and production.
In Logistics: IoT optimizes transport and storage with real-time shipment tracking, inventory management, and predictive route planning, improving supply chain efficiency.	Examples of application: tracking with RFID, inventory management, supply chain transparency.
In Commerce: IoT personalizes experience through data analysis, helping retailers track purchasing behavior, automate restocking, and offer tailored recommendations	Examples of applications: Product traceability, smart labels, personalized customer experience.

2.2. IoT in the textile and apparel area

This integration of IoT within non-manufacturing sectors demonstrates the versatility of Industry 4.0 technologies, highlighting their capacity to transform a wide range of industries and create smarter, more **connected ecosystems**. This versatility is particularly evident in the **textile and apparel industry**, where the application of these types of technology has increased significantly.

Table 9: Opportunities for IoT Applications in the textile and apparel area

Planning, control and Management of the production chain	Using IoT, CPS, RFID, and Machine-to-Machine (M2M) technologies, real-time information about customers, products, and processes enables optimal planning and management of the textile chain, allowing production, stock, demand, purchasing, and logistics systems to operate autonomously
---	---

Areas of creation and development	IoT technologies like RFID, M2M, and networked sensors enable data collection throughout a product's lifecycle, improving process efficiency and enhancing product quality
Monitoring and maintenance	IoT-connected textile machines enable remote monitoring, maintenance, and updates, managed by either the owner or the supplier
Wearables and smart textiles	Innovative textiles with sensors and communication modules connect clothing to the internet, offering benefits beyond traditional comfort and style. These garments can collect and transmit users' vital signs to a database for storage, processing, analysis, and diagnosis, which can then be shared with smart devices

In essence, IoT plays a pivotal role in enhancing both **manufacturing processes** and **supply chain management**. By integrating sensors, connected devices, and data analytics, IoT enables **real-time monitoring, predictive maintenance, and quality control** in textile production. Beyond manufacturing, IoT fosters innovation in **wearable technology** and **product traceability**, driving efficiency and creating value across the entire textile ecosystem. This connection between IoT and the textile sector sets the stage for exploring its components and practical applications in greater depth.

2.3. IoT applications in textile manufacturing process and industrial activities

In textile manufacturing, IoT forms the backbone of Smart Factories in Industry 4.0. Unlike traditional factory automation, which focuses on fully automating unmanned factories and processes, IoT integrates connectivity and data-driven intelligence into manufacturing systems.

A **Smart Factory in Industry 4.0** is a highly automated manufacturing facility that uses advanced technologies like **artificial intelligence (AI)**, the **Internet of Things (IoT)**, and robotics to optimize operations, improve efficiency, and ensure superior quality. In a smart factory, machines and equipment are interconnected, allowing them to communicate with each other and with a central control system for seamless coordination and real-time decision-making.

Presenting a general outline of the production process that comprehensively covers its stages, from design to finishing of garments, as well as defining standardized phases, becomes again a complex challenge. This is because **factories can vary depending on several factors**, such as the type of products manufactured, the available technologies, the scale of production, the specific resources of each company, as well as the internationalization and diversification of production.

It should also be noted that in a **global context**, where production may be distributed across different locations or countries, factories may not carry out all stages of the process at the same place, which adds complexity to the system. Therefore, although this model reflects a common structure, each production plant can adapt it to its specific needs and conditions.

In addressing this matter, it can be stated that the generic process framework for automatic manufacturing process in the textile sector can be:

- **Design:** the creative and technical process of conceiving the style, shape, and functional characteristics of a garment.
- **Pattern making:** the creation of patterns and molds that serve as the basis for cutting and assembling fabric pieces in garment making.
- **Embroidery:** a technique of stitching that uses threads and needles to add decorative or functional designs to fabric.
- **Automatic cutting:** the use of automated machinery to precisely cut fabrics according to predefined patterns, improving efficiency and reducing waste.
- **Pick and place:** an automated process in which robots or machines pick up and place fabric pieces or components in the correct locations during production.
- **Automatic sewing:** an automated sewing system that uses machines to stitch fabric pieces accurately and efficiently, minimizing human intervention.
- **Fitting:** The adjustment of a garment to human body measurements and shapes, carried out using automated techniques or technologies to achieve a perfect fit.

Building on the general framework of the textile manufacturing process, the integration of **IoT** technologies at each stage significantly enhances operational efficiency. By embedding smart sensors and data-driven systems, **IoT** optimizes key processes throughout the production line. As each of these stages becomes more interconnected, the factory moves beyond traditional automation and embraces intelligent systems capable of adapting to dynamic production needs.

This can also be **applied to different kinds of industrial activities**, addressed through practical examples:

Table 10: Applications of different kinds of industrial activities

Industrial activities	Examples
Weaving	<p>We@velink by Vandewiele (VDW): Vandewiele offers "We@velink," a digital service for managing the carpet-weaving process. It includes CAD/CAM tools for 3D design creation and machine-dependent files for optimizing weaving. This solution is ideal for smaller, customized production runs, especially in fast-fashion industries. The "pay-per-package" model makes it accessible to smaller weavers, allowing them to benefit from IoT without the need for large investments. VDW machines can be remotely monitored, supporting predictive maintenance and the creation of digital twins to optimize production, reduce waste, and improve planning.</p> <p>LoomBrowser by ITEMA: ITEMA offers "LoomBrowser," management software that allows users to monitor machine efficiency, adjust settings, and create or download new patterns. Along with iCare and iBooster packages, it enables real-time monitoring of machine components, suggesting adjustments to improve machine speed and production efficiency.</p> <p>myDoXVR by Dornier: Dornier provides "myDoXVR," a portal powered by SAP HANA for production monitoring, connecting weaving machines to data acquisition systems via Ethernet. The system allows remote access to machine</p>

	<p>data, part ordering, and will soon include remote service, training, and scheduled maintenance to further optimize efficiency.</p> <p>Picanol's Smart Sensors: Picanol integrates smart sensors into weaving machines to collect essential data and digitize machine functions. These include self-correcting features, such as managing air consumption by controlling nozzle valves, reducing air usage by 20%. The company is also working on automating the removal of broken picks to enhance operational efficiency.</p>
Knitting	<p>KM.ON by Karl Mayer: In warp knitting, Karl Mayer implements KM.ON, a digital platform that uses the cloud to manage the production process. This solution, powered by the ADAMOS platform, allows textile manufacturers to integrate engineering and production processes, enhancing flexibility and optimization in fabric manufacturing.</p> <p>KnitPLMVR by Shima Seiki: Shima Seiki offers KnitPLMVR, an IoT system that covers the entire product lifecycle. It includes tools like "YarnBank," which provides digital yarn data for creating virtual prototypes, and "Staf," a fashion trend platform. In production, the solution facilitates real-time production planning and control, optimizing resource use and improving operator performance.</p> <p>knitelligenceVR by Stoll: Stoll presents "knitelligenceVR," a solution that connects the entire knitting process, from design to production. It integrates RFID readers and barcode scanners in machines to reduce production errors and automate functions, improving operational efficiency. Additionally, it allows the upgrading of older machines to connect to these systems without needing to replace them entirely.</p>
	<p>RFID Tracking by VAV Technology: VAV Technology provides RFID buttons sewn into jeans to track products during the finishing and laundering process. This system helps in product counting, error detection, and worker performance evaluation. It is supported by robotic automation and advanced software at each stage of the finishing process, improving accuracy and reducing labor-intensive tasks.</p>
	<p>eMark 3.0 by Jeanologia: Jeanologia's eMark 3.0 software is used for laser marking on denim. It allows remote access to laser machines, enables the design of a unified database from any location, and facilitates pre-production design simulation, optimizing the finishing process and enhancing design flexibility.</p> <p>Twine Solutions: Twine Solutions offers a digital on-demand thread dyeing system that uses a digital dye-to-match color application. The system allows the color to be selected through an app that determines the RGB values and applies the dye using a small-scale printer. This approach reduces inventory, water consumption, and logistics costs, offering a more sustainable and responsive solution to traditional thread dyeing methods.</p>
Testing	<p>Dos&DyeVR by Technorama: Technorama's "Dos&DyeVR" is an automatic laboratory system designed to reduce dyeing trials. The system consists of an automatic dispensing machine working with robotized dyeing machines, automating the 'lab dip' process. This reduces manual errors, ensuring the correct recipe is obtained the first time, which minimizes corrections in bulk dyeing and improves overall productivity, saving time and resources in the dye house.</p>
Sewing	<p>JaNets by JUKI: JUKI's "JaNets" improves workforce efficiency by enhancing visibility and performance. It uses terminals at each workstation to track production, identify stoppages, and correlate machine settings with recurring</p>

	errors, such as needle breakages linked to sewing speed. The system helps balance workloads, monitor efficiency, and predict the cost impact of issues, enabling better decision-making. Based on historical performance, it suggests adjustments and offers a quick return on investment within 12–24 months for medium-sized factories.
--	---

These examples illustrate how technologies facilitate processes such as **machine monitoring and automation** during the manufacturing process, as well as **optimization processes** (supply chain management, inventory tracking, energy efficiency) **and the control of environmental conditions** (quality control and safety monitoring), both in the manufacturing process and in logistics. Understanding these applications is crucial to comprehending how this technology transforms production processes in Smart Factories within Industry 4.0.

2.4. Machine monitoring and automation

The integration of the Internet of Things (IoT) in the textile industry has revolutionized the way machinery is monitored and managed during the manufacturing process.

Machine monitoring and automation involve the use of advanced technologies, including sensors, interconnected devices, and automated systems, to oversee and control the operation of machinery in real time. This approach ensures that machines operate at optimal performance levels by continuously collecting, analyzing, and responding to data related to their operation. **Automation** enhances efficiency by streamlining repetitive tasks, while **monitoring** provides actionable insights to prevent downtime, maintain consistent quality, and optimize resource utilization. Together, these capabilities enable manufacturers to achieve higher productivity, reduce operational costs, and ensure the reliability of their equipment.

The analysis of these processes can be divided into two main categories: production process monitoring and predictive maintenance management.

Production process monitoring

Production process monitoring allows real-time tracking of production lines, machinery, and inventory. IoT sensors collect data on performance indicators such as output, machine utilization, and product quality, helping identify bottlenecks and inefficiencies. By monitoring environmental conditions and equipment performance, IoT ensures optimal manufacturing conditions and improves supply chain visibility. This enhances efficiency, reduces costs, and improves product quality, driving productivity and profitability in manufacturing.

In the **textile sector** uninterrupted operation of machinery such as looms, spinning machines, and dyeing equipment is critical for meeting production demands. Some examples are tension sensors, temperature and humidity sensors, vibration sensors, speed and alignment sensors, and so on. These sensors collect critical data to monitor and optimize the factory's production processes in real time, ensuring efficiency and quality at every stage.

Predictive maintenance

Predictive maintenance is a key IoT application in Industry 4.0, using the real-time production process monitoring of machinery to predict failures and optimize maintenance schedules through the information received by sensors and other devices. By using sensors and analytics, manufacturers can minimize downtime, reduce costs, and enhance productivity, while automating tasks like material handling to improve efficiency and reduce errors. In addition to

automating tasks like material handling, predictive maintenance enhances long-term equipment reliability and extends the lifecycle of machinery, driving substantial cost savings and operational efficiency. Ultimately, this transformative approach boosts **productivity, product quality, and overall profitability** in modern manufacturing.

In the **textile sector** the production process monitoring can cast through the information received by the sensors. This machines can incorporate sensors that can monitor essential parameters like thread tension, roller alignment, and motor performance, flagging potential issues like wear and tear or overheating. By addressing these problems before they escalate, manufacturers can avoid production delays that compromise product quality or lead to fabric waste. Additionally, automating routine maintenance tasks frees up skilled labor for more value-added activities. Predictive maintenance not only ensures consistent output in high-demand environments but also contributes to **sustainability efforts** by optimizing energy consumption and reducing material waste, aligning the textile industry with modern environmental standards

Automatization

Intelligent automation refers to the integration of IoT systems with devices like robotic arms, automated conveyors, and smart machinery to streamline repetitive tasks and enhance operational efficiency. Through the use of IoT, these systems collect, transmit, and analyze data in real time, enabling machines to adapt dynamically to changing production conditions. IoT sensors and devices provide continuous feedback, allowing automated systems to make adjustments autonomously, reduce human intervention, and ensure optimal performance. By automating tasks such as material handling, quality control, and equipment calibration, IoT-enabled intelligent automation minimizes errors, increases precision, and accelerates production workflows, creating smarter and more adaptive manufacturing environments.

In the textile industry, intelligent automation plays a crucial role in improving efficiency and product consistency. For example, robotic arms integrated with IoT systems can automate the movement and alignment of large fabric rolls, ensuring precise positioning during cutting or printing processes. Smart conveyors, equipped with sensors, can automatically sort and transport materials between different stages of production, reducing bottlenecks. Additionally, automated dyeing machines can adjust temperature and chemical concentrations in real time based on fabric type and load size, ensuring uniform color application. By leveraging intelligent automation, textile manufacturers can achieve faster production cycles, consistent quality, and reduced waste, meeting high-demand schedules with greater reliability.

2.5. Optimization processes and control of environmental conditions: The supply chain management. Real-time tracking of materials and products: from inventory to quality and control

Process optimization

Process optimization refers to the **systematic improvement of manufacturing workflows** to enhance efficiency, reduce costs, and improve product quality. In the context of IoT, it involves the use of real-time data collected from sensors and interconnected devices to analyze and adjust production parameters dynamically. IoT systems enable **energy consumption monitoring, production time optimization, product traceability, and automated quality control**, ensuring efficiency, reducing waste, and maintaining high standards throughout the

manufacturing process. By leveraging IoT-enabled insights, manufacturers can achieve smarter, faster, and more sustainable operations.

Inventory and asset tracking

Asset tracking uses IoT devices, such as sensors and RFID tags, to monitor the location, status, and condition of assets like machinery, tools, and raw materials in real-time. This enables manufacturers to optimize workflows, reduce downtime, and enhance supply chain efficiency. By analyzing collected data, businesses can improve productivity, extend asset lifespan, comply with regulations, and minimize environmental impact, ultimately boosting overall efficiency and sustainability in manufacturing processes.

In the textile industry, asset tracking provides precise monitoring and management of critical resources and equipment throughout the production process. For example, RFID tags and IoT sensors are used to **track the movement and location of raw materials** like cotton bales, ensuring they are delivered to spinning machines on time and reducing delays in production. Similarly, IoT-enabled systems monitor the real-time condition of fabric rolls in storage, ensuring they are maintained at optimal temperature and humidity levels to prevent material degradation.

In addition, production equipment like **looms, dyeing machines, and cutting tools** can be fitted with IoT sensors to track their operational status and location within the facility. This helps manufacturers coordinate workflows more effectively and avoid bottlenecks caused by misplaced or non-operational machinery. These applications not only improve process efficiency but also enable better inventory control and equipment utilization, which are essential for meeting production targets and maintaining product quality.

Outside the factory, IoT and RFID technologies enhance asset tracking in the textile sector through **applications that provide granular control and oversight**. For example, RFID tags can be used to monitor the utilization of reusable textile packaging, such as crates or specialized transport containers for delicate fabrics, ensuring they are returned and reconditioned efficiently. Similarly, IoT-enabled smart shelves in distribution centers can track fabric rolls or garment batches, automatically **alerting staff when inventory levels are low** or when specific items are misplaced. These technologies improve asset management and provide valuable data to support broader supply chain management strategies.

Inventory and supply chain optimization

Supply chain optimization technologies like RFID tags and GPS tracking to monitor the real-time location and status of materials and products. This enables supply chain managers to optimize inventory levels, reduce transportation costs, and improve delivery times. IoT also enhances logistics efficiency by providing accurate data and enabling predictive maintenance, ensuring smoother operations, better customer satisfaction, and increased productivity in smart factories.

In the textile industry, **inventory and supply chain optimization** relies on IoT technologies to improve the flow of materials and products. For instance, **RFID tags** are used to track raw materials like yarns or fabric rolls throughout the production process, ensuring that sufficient stock is available at each stage to avoid delays. Similarly, **GPS tracking** enables real-time monitoring of shipments, such as the transportation of finished garments to distribution centers, allowing manufacturers to optimize routes and reduce delivery times.

IoT systems also support **warehouse management** by providing real-time updates on inventory levels. Automated alerts notify managers when stocks of essential materials, like dyes or specialty fibers, fall below critical thresholds, preventing production interruptions. Furthermore, predictive analytics powered by IoT help identify patterns in material usage, enabling manufacturers to forecast demand more accurately and streamline procurement schedules. These applications ensure that textile manufacturers can reduce costs, enhance logistics efficiency, and meet delivery deadlines with greater reliability.

IoT technologies enhance logistics and commerce by enabling detailed tracking and condition monitoring of shipments. For instance, smart tags can monitor the vibration levels or pressure **during transport** to prevent damage to delicate textiles such as lace or embroidered fabrics. Additionally, IoT systems integrated into warehouse operations can optimize storage conditions by automatically **adjusting lighting or ventilation** for sensitive materials, improving their longevity before distribution. In retail, real-time connectivity allows brands to implement subscription-based delivery models for essentials like uniforms or reusable fabric items, ensuring timely replenishment based on customer usage patterns. These innovations not only improve efficiency but also create opportunities for more sustainable and customer-focused logistics in the textile industry.

Energy efficiency

Energy efficiency is enhanced by IoT devices that monitor real-time energy usage and identify inefficiencies. IoT enables automated systems to optimize energy consumption in lighting, HVAC, and production lines, while integrating renewable energy sources to lower reliance on fossil fuels. Energy-efficient measures, such as smart lighting and controlled HVAC systems, reduce costs, improve sustainability and minimize environmental impact, transforming energy management in manufacturing processes.

In the textile industry, IoT applications for energy efficiency play a critical role in optimizing resource use and reducing operational costs. For instance, **spinning and weaving machines**, which are energy-intensive, can be equipped with IoT sensors to monitor real-time energy consumption. These sensors enable manufacturers to identify inefficiencies, such as idle machines consuming power unnecessarily, and implement measures like scheduling usage during off-peak energy hours.

In addition, **HVAC systems**, essential for maintaining specific temperature and humidity levels critical to processes like spinning and dyeing, can be controlled automatically through IoT-enabled systems. These systems adjust settings based on production schedules or environmental changes, ensuring conditions are met without overuse of energy.

Smart lighting systems in textile factories are another application, where IoT technology adjusts lighting levels based on occupancy or activity zones. For example, areas of the facility not in use, such as storage or non-operational production lines, can have reduced lighting to conserve electricity. These IoT-driven approaches not only lower energy consumption but also align with sustainability goals by reducing reliance on non-renewable energy sources.

IoT technologies for energy efficiency focus on optimizing warehouse and transportation operations. For example, **automated guided vehicles** (AGVs) used in textile distribution centers are equipped with IoT sensors to monitor battery levels and optimize charging schedules, ensuring minimal energy waste during operations. Furthermore, stores can automate lighting

within specific shelving areas, ensuring illumination only when customers are nearby, reducing unnecessary energy consumption.

Control of environmental conditions

By leveraging IoT systems, manufacturers can not only optimize production conditions but also implement proactive safety measures that ensure both the well-being of workers and the integrity of the equipment. IoT sensors not only ensure that environmental conditions remain within optimal ranges to support **quality control**, but also play a crucial role in **safety monitoring** by detecting hazardous situations like overheating, gas leaks, or poor ventilation.

Quality control

Quality control utilizes IoT sensors to detect defects in real-time, ensuring products meet required standards. By monitoring key factors such as temperature, pressure, and vibration, IoT enables immediate identification and correction of anomalies. IoT devices also facilitate quality testing, traceability, and predictive maintenance, providing real-time insights into production processes. This enhances product quality, reduces defects, and streamlines corrective actions, ultimately improving manufacturing efficiency and reliability.

Quality control powered by IoT ensures that fabrics and garments consistently meet required standards. For instance, **vision sensors and cameras** installed in weaving machines can detect defects such as uneven patterns, missed threads, or color inconsistencies in real time, allowing operators to address issues before production proceeds further.

In processes like **dyeing and printing**, IoT sensors monitor key parameters such as temperature, pressure, and chemical concentrations to ensure uniform application and prevent defects like streaking or uneven coloring. **Vibration sensors** in spinning and weaving machines can detect irregularities in equipment performance that might lead to imperfections in the final product, prompting immediate corrective action.

Additionally, IoT systems enable comprehensive **traceability** by linking production data with individual batches, ensuring that any quality issues can be traced back to their source, such as a specific machine or raw material. This approach not only reduces waste by addressing defects promptly but also enhances overall production efficiency and helps manufacturers maintain a consistent and high-quality output.

In the retail and logistics context, IoT-driven quality control ensures that textiles maintain their **integrity throughout the supply chain**. For example, RFID tags embedded in garments or fabric rolls can store and transmit **quality inspection data** collected during production, enabling retailers to verify that products meet standards before reaching store shelves. Smart packaging equipped with IoT sensors can monitor external conditions, such as humidity or rough handling during transportation, to detect potential damage and trigger alerts, ensuring only high-quality items are delivered. These technologies not only enhance customer satisfaction but also reduce returns and associated logistical costs, streamlining operations and reinforcing brand reputation.

Safety monitoring

Safety monitoring leverages IoT devices to **ensure worker safety** by monitoring conditions, detecting hazards, and enhancing safety protocols. IoT sensors provide real-time data on temperature, gas levels, and other **environmental factors**, while predictive maintenance

prevents **machinery failures**. Automated alerts notify workers of unsafe conditions, and wearable devices track employees' vitals to reduce accidents caused by fatigue or stress. IoT analytics identify trends to improve safety measures, ensuring a safer and more efficient working environment.

These systems can **activate automated alarms, adjust environmental settings, or even initiate safety protocols**, such as equipment shutdowns or evacuation alerts. In the textile sector, this is particularly important in areas such as dyeing, spinning, and weaving, where factors like temperature, humidity, and air quality must be strictly controlled to ensure both product quality and worker safety.

For example, in **dyeing facilities**, sensors can detect hazardous chemical concentrations in the air and automatically trigger ventilation systems or shut down equipment to prevent exposure to harmful fumes. Similarly, in **spinning rooms**, where high-speed machinery is in operation, IoT systems can monitor vibration levels to detect potential risks, such as machine malfunctions, that could lead to accidents. By integrating IoT with safety protocols, textile manufacturers can proactively protect their workforce and equipment, reduce risks of accidents, improve emergency response times, and maintain compliance with occupational health and safety standards, all while ensuring efficient and consistent production processes. This approach not only improves safety but also enhances the overall productivity of the manufacturing environment.

In logistics and commerce, IoT-based safety monitoring ensures **secure handling and transport of textiles**. For instance, smart containers equipped with IoT sensors can detect irregular conditions such as overheating or chemical leaks during the transport of treated fabrics, automatically alerting operators to prevent potential hazards. **Wearable devices** used by warehouse staff can track vital signs and movement patterns to detect signs of fatigue or unsafe practices, reducing accidents during loading and unloading operations. Furthermore, automated safety analytics can monitor the handling of fragile or high-value textiles, triggering alerts if improper storage or stacking is detected. These measures not only protect workers and goods but also ensure compliance with safety regulations across the supply chain.

2.6. Conclusion

The integration of IoT technologies in the textile industry marks a transformative shift, enabling enhanced efficiency, safety, and innovation across every stage of the value chain. From smart factories powered by real-time monitoring and predictive maintenance to logistics systems optimized through RFID and GPS technologies, IoT has become indispensable in driving operational excellence. Beyond manufacturing, IoT fosters advancements in smart textiles and wearables, offering personalized and adaptive solutions in health, sports, and retail sectors. Moreover, IoT-enabled safety protocols and energy-efficient systems underscore the industry's commitment to sustainability and worker well-being. By seamlessly connecting physical and digital realms, IoT not only redefines production processes but also paves the way for a smarter, more sustainable, and customer-centric future in the textile and apparel industry. This holistic integration positions IoT as a cornerstone of Industry 4.0, fostering innovation and resilience in an ever-evolving global market.

2.7. References

Soori, M., Arezoo, B., & Dastres, R. (2023). Internet of things for smart factories in industry 4.0, a review. *Internet of Things and Cyber-Physical Systems*, 3, 192-204. <https://www.sciencedirect.com/science/article/pii/S2667345223000275>

Dal Forno, A. J., Bataglini, W. V., Steffens, F., & Ulson de Souza, A. A. (2023). Industry 4.0 in textile and apparel sector: a systematic literature review. *Research Journal of Textile and Apparel*, 27(1), 95-117. https://www.researchgate.net/publication/368277378_Industry_4.0_in_textile_and_apparel_sector_a_systematic_literature_review

Manglani, H., Hodge, G. L., & Oxenham, W. (2019). Application of the internet of things in the textile industry. *Textile Progress*, 51(3), 225-297. <https://www.tandfonline.com/doi/abs/10.1080/00405167.2020.1763701>

Lee, S., Rho, S. H., Lee, S., Lee, J., Lee, S. W., Lim, D., & Jeong, W. (2021). Implementation of an automated manufacturing process for smart clothing: The case study of a smart sports bra. *Processes*, 9(2), 289. <https://www.mdpi.com/2227-9717/9/2/289>

3. Smart textiles and wearable technology. Materials and technologies

Nowadays, textiles applications have expanded significantly. Humans wear clothing constantly and are surrounded by various types of textiles in nearly all environments. The integration of **multifunctional features** into this everyday material has become a key area of interest in recent years. Advanced fabrics, **fibers**, **yarns**, and other materials with enhanced functionalities have been developed for a wide range of applications. The production and innovation of textile materials have emerged as an important avenue for **high-tech advancements**.

Smart Fabrics, generally regarded as **Smart Textiles**, represent a research domain that draws upon various disciplines, including chemistry, computer science, engineering, textile design, material science, and physics. Smart Textiles encompass a broad field of studies and products that showcase the enhanced functionality and utility of conventional fabrics. These textiles are capable of **interacting** with their environment or the user. They are composed of fibers and filaments integrated into knitted, woven, or non-woven structures. The collaboration between textile design and **electronics** plays a crucial role in creating smart materials that can perform diverse functions, often found in both flexible and rigid electronic devices.

Smart textiles exhibit advanced intelligence and can be classified into three distinct categories in terms of functionality:

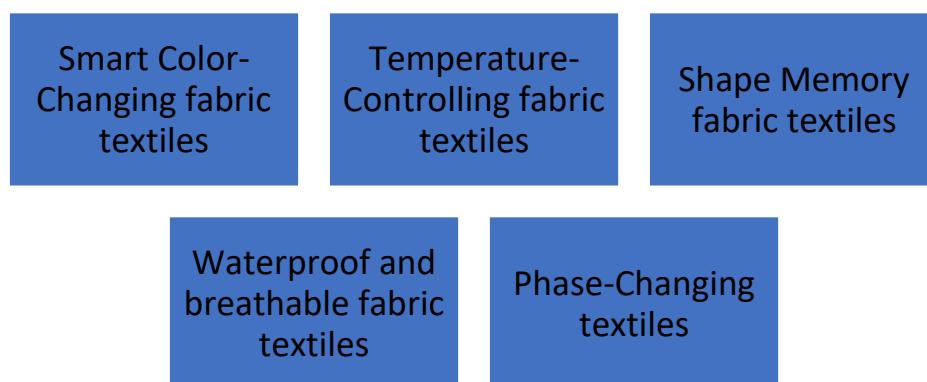
- **Passive smart textiles:** These are equipped with sensors that can only detect and monitor the environment or the user without performing any further actions.
- **Active smart textiles:** These include both sensing devices and actuators, enabling them to not only detect stimuli from the environment but also respond or react to those stimuli.
- **Ultra or very smart textiles:** These represent the most advanced type of smart textiles, capable of not only sensing and reacting but also adapting their properties in response to changing environmental conditions.

Furthermore, in terms of type of wearable, can be classified in:

- **Accessory wearables:** these are low-power devices designed to be worn on the body as accessories, such as smartwatches, smart glasses, or fitness trackers
- **Textile/Fabric wearables:** these wearables incorporate electronics into textiles using flexible fabrics. In 2011, the European Center for Standardization defined them as functional textile systems capable of interacting with their environment, meaning they can adapt or respond to environmental changes
- **Patchable wearables:** these are ultra-thin, flexible devices that can be adhered directly to the skin
- **Implantable wearables:** lightweight and self-powered, these wearables are designed to be safely implanted into the human body without causing health concerns

These categories of smart textiles differ in their ability to interact with and adapt to the environment, but they all fundamentally rely on advanced materials and manufacturing techniques. The selected materials not only determine functionalities, such as sensing or responding to stimuli, but also ensure integration with production methods that preserve the flexibility, durability, and comfort inherent to textiles. Therefore, it is essential to explore the different types of materials and manufacturing technologies that enable the development of these innovative smart textile categories.

3.1. Materials and methods


Fabrication techniques

Integrating electronic circuits into textiles can be accomplished through various approaches, depending on the substrate material chosen. These methods include:

- 1 Using conductive adhesives to attach components to the substrate.
- 2 Soldering surface-mounted electronic components directly onto metallic organza.
- 3 Incorporating a component's thread-frame directly into a circuit through couching.
- 4 Securing components into a conductive stitched switch by "stapling" them in place.

Integrating Technology into Apparel

This approach entails embedding microprocessors and sensors directly into the yarn, allowing their integration without interfering with the standard manufacturing process of the apparel. Encapsulation technology is used to safeguard these components. The process includes incorporating active and sensory micro-devices during the transition from fiber or yarn production to fabric manufacturing, followed by utilizing these smart fabrics in garment production to create innovative, tech-enabled clothing. The most common types of smart fabric are:

The way in which IoT is incorporated in this kind of smart textiles can be addressed by some examples on how technology is integrated into apparel:

Flexible Circuit Substrates

Current methods for fabricating circuits on flexible substrates often involve metallizing a flexible polymer base capable of withstanding the high temperatures of conventional soldering processes. Kapton film, for instance, is a commonly used material in scenarios such as compact camera designs where circuitry must fit within tight spaces, in portable computers and printers where numerous connections must traverse hinges or rotating joints, and in non-planar antennas that require precise dimensions while conforming to conical shapes.

However, when designing circuits on such substrates, careful attention must be paid to ensure that mechanical stress from the application does not impact the solder joints connecting components to the circuitry, as this could compromise the product's longevity. It is also important to note that traditional flexible substrates typically maintain their flexibility only in areas where electronic components are not embedded, presenting a challenge in balancing mechanical flexibility with the electrical performance needed for effective interconnects.

Flexible Multi-Chip Modules (FMCM)

The Flexible Multi-Chip Module (FMCM) is a small, semi-flexible electronic circuit developed for textile integration in collaboration with the Charles Stark Draper Laboratory. It reads sensor data and communicates with a controlling device using techniques similar to those created by General Electric.

The module consists of a PIC16F84 microcontroller, four resistors, and a capacitor, forming its core. It connects to devices through specific pins for data transmission at 9600 bits per second, with additional pins for electrodes and power supply.

Compact and flexible, the module measures 1.5 cm × 0.8 cm and 0.04 cm thick, with a bending radius of 50 cm. To achieve this, components are ground to a minimal size and secured on a stable base. A Kapton film aligns and holds the components, with electrical connections added via a mask. Kapton layers protect the top and bottom, creating a sealed, flexible structure.

This fabrication process enables the integration of tiny, durable circuits into textiles without sacrificing flexibility or functionality.

Electrically Active Textiles

Many natural textile materials possess properties that make them suitable for use in electronic circuitry. These materials can be combined in various ways with synthetic fibers to enhance their functionality. Examples include spinning natural and synthetic fibers with metallic threads, wrapping or plating them with conductive materials, or integrating conductive polymer fibers into the fabric structure. These combinations enable the creation of textiles that can conduct electricity while maintaining flexibility and durability, opening new possibilities for smart and interactive fabrics.

Metallic Silk Organza

Metallic silk organza, believed to have originated in India, is a fabric known for its conductive and durable properties. It features parallel silk threads in the warp and silk threads wrapped with a metal foil helix in the weft, constructed similarly to cloth-core telephone wires, providing high conductivity.

The silk fiber core can withstand high temperatures and offers excellent tensile strength, making it suitable for industrial embroidery. Its weave ensures conductive fibers remain parallel and separated, even under shear stress, by forming stable parallelograms that prevent contact.

Circuits fabricated on metallic silk organza require an insulating layer, such as fabric backing, to prevent folding contact between conductive parts. These circuits offer greater flexibility than conventional substrates, integrating components like microcontrollers to control LEDs, sense touch, and provide audible feedback via piezoelectric speakers. This combination of durability and functionality highlights the potential of metallic silk organza for advanced interactive textiles.

Applications

The innovative materials and fabrication methods discussed lay the foundation for the development of smart textiles, enabling the integration of advanced electronic functionalities into fabrics without compromising their flexibility, durability, or comfort. These technologies open the door to a wide range of applications, from wearable healthcare devices and sports performance monitoring to interactive fashion and industrial safety gear. By leveraging these cutting-edge techniques, smart textiles can transform everyday fabrics into dynamic tools for sensing, communication, and actuation, addressing diverse needs across multiple industries.

In the early 2000s, the development of these textiles focused on integrating **sensors** and **actuators** into designs, with an emphasis on advanced **electronic technologies**. The resulting products were more **portable** than truly **wearable**. Driven by technological advancements, textile and fashion professionals began conducting their own research into **smart** and **wearable electronics**. This led to collaborations between the **fashion** and **electronics industries**, marking an era where **prototype development** of active materials for **smart textiles** was prioritized over business-oriented applications.

Today, the applications of smart textiles have expanded to broaded areas:

Health and Medicine

The field of medicine has greatly advanced through the integration of smart textiles and wearable computing, particularly in telemedicine. These technologies enable seamless connectivity between patients and healthcare systems. Smart textiles are transforming healthcare by enabling advanced health monitoring. For example, wearables that are designed for early detection of breast cancer, while other garments provide accurate tracking of biometrics to aid in disease prevention and promote a healthy lifestyle

At the center of this network lies the communication hub, which links to critical medical services on one side such as medical servers, emergency response teams, caregivers, and physicians, and to wireless communication technologies like cellular networks and WLAN on the other. Wearable sensors on the patient continuously monitor vital signs, ensuring real-time data transmission and enabling swift medical intervention when needed. This interconnected system demonstrates the transformative potential of smart textiles in modern healthcare.

- **Wireless health monitoring system:** designed to collect real-time medical data and continuously monitor parameters such as muscle activity, respiration, and EKG. This is achieved through a wireless-enabled garment embedded with textile sensors. The system features a sensitized vest incorporating fully woven textile sensors, a compact electronic board for motion detection and signal preprocessing, and Bluetooth connectivity for seamless data transmission

Security wearables

Smart devices designed to enhance personal safety by providing features like location tracking, emergency alerts, and real-time monitoring.

Life belt	Wearable device designed for monitoring pregnant women, particularly in areas with limited medical care. It tracks vital data for both the mother and fetus, transmitting it to a computer for analysis by medical professionals. This tool enables obstetricians to remotely monitor patients, access medical records, evaluate preliminary diagnoses, and receive alerts about critical changes, ensuring timely intervention.
Life jackets	Designed to monitor the heart rate and blood pressure of the wearer. The embedded device collects this information and transmits it to a computer, where it can be analyzed by a medical professional. Additionally, the jacket enables cuffless blood pressure measurement using arterial tonometry to analyze the radial pulse waveform.
Military/ defense	Military operations, both on the frontlines and in support roles, rely heavily on real-time information to enhance protection, survivability, safety, and effectiveness. The smart armored vest is designed to facilitate efficient communication between frontline soldiers and support teams. Equipped with sensors, it wirelessly transmits critical data to a back-end system, enabling medics, emergency responders, and other units to monitor vital signs and injuries. This ensures timely intervention and improved coordination, enhancing both the safety and operational efficiency of military personnel.

Navigation

GPS-enabled clothing helps users navigate to their destinations and can also act as a tracking system, making it possible to locate misplaced or lost garments.

Networked jacket: This innovative jacket features integrated GPS technology to track the wearer's location, projecting a map onto a flexible display screen embedded in the sleeve. Additionally, it can reflect the wearer's mood through dynamic color changes and symbolic displays, adding a unique layer of personalization and interactivity.

Smart backpacks: equipped with GPS modules and LED indicators provide practical navigation assistance. The LEDs, integrated into the straps or exterior of the backpack, light up to indicate the direction the wearer should take, based on input from a connected smartphone app. This hands-free navigation system is intuitive and ideal for travelers, hikers, or cyclists, offering a straightforward way to follow directions while keeping the user focused on their surroundings.

Communication

Devices integrated into clothing that enable seamless information exchange through technologies like Bluetooth, Wi-Fi, or cellular networks.

Electronic tablecloth: is used at social events to facilitate communication and interaction with a computer through its sensor-embedded surface. Attendees identify themselves by placing an RFID-enabled coaster on a designated embroidered pattern and touching a fabric electrode. The tablecloth reads the tag, prompting a dialog between the user and the computer via a fluorescent display and keypad.

Sports

Smart devices integrated into athletic gear or accessories that use Internet of Things (IoT) technology to track, analyze, and optimize athletic performance, fitness metrics, and health data in real time. These devices connect to apps or platforms for actionable insights and personalized training recommendations.

Smart sports shoes: Walking shoes can be equipped with GPS technology to track the location of the wearer, particularly useful for emergency rescue situations and for monitoring the whereabouts of children, providing enhanced safety and peace of mind. Other applications for wearable shoes are running shoes designed with incorporated sensors designed to track athlete movements, sending the information to information technology tools such as a smartphone.

Smart bras: adjusts its properties to support active women by stiffening or relaxing its cups and tightening or loosening its straps to minimize breast movement, reducing pain and sagging.

Self-Care

Clothing with mercury sensors can self-regulate temperature, such as heated jackets that adapt to the wearer's body heat and the surrounding environment, offering customized comfort.

Smart Thermal-Regulating Blankets: these blankets feature sensors that adjust the heat level based on the user's body temperature, providing personalized comfort.

Heated gloves with sensors: these gloves detect the temperature of the hands and the environment, activating or deactivating their heating system to keep the hands warm during winter sports or work in extreme cold conditions

Assistance for the Visually Impaired

Smart textiles improve the independence and mobility of visually impaired individuals by integrating technologies that assist in safely navigating their environment.


Smart canes with alerts: vests or wristbands, paired with a smart cane, provide haptic feedback or vibrations to guide visually impaired users. These textiles receive signals from sensors on the cane that detect obstacles or pathways, helping users navigate safely and confidently

Customizable Fabrics

Innovative fabrics enable users to change the color or design of their clothing instantly, offering enhanced personalization and adaptability.

Fashion and entertainment: light-emitting textiles are starting to appear on fashion runway expos, indicating a potential future trend in wearable computing integrated into clothing designs

Musical jacket with embodied keypad: transforms an ordinary denim jacket into a wearable musical instrument. It features an embroidered fabric keyboard, built-in amplifying speakers, a MIDI sequencer/synthesizer, a conductive fabric bus made of organza, and batteries to power the system. This setup allows the wearer to play notes, rhythms, chords, and accompaniment using any instrument within the General MIDI framework.

3.2. Conclusion

Smart textiles and wearable technologies represent a transformative advancement in materials science and everyday functionality. By integrating sensors, actuators, and IoT connectivity, textiles have evolved from passive materials to dynamic tools capable of enhancing daily life in areas such as healthcare, security, fashion, and self-care.

Innovative materials like conductive fibers and phase-change textiles, combined with advanced manufacturing techniques, enable applications ranging from health monitoring and navigation to entertainment and personalization. These technologies highlight the growing intersection of textiles, electronics, and design, offering versatile solutions for modern challenges and opportunities for further innovation.

Smart textiles showcase the potential to revolutionize industries and improve quality of life, emphasizing their role as a key driver in the future of wearable technology and adaptive materials.

3.3. References

Chika, Y. B., & Adekunle, S. A. (2017). Smart fabrics-wearable technology. *Int. J. Eng. Technol. Manag. Res*, 4(10), 78-98. <https://core.ac.uk/download/pdf/144866668.pdf>

Malhotra, Y., & Chawla, D. (2022). *Internet connected clothing*. Vivekananda School of Information Technology, Vivekananda Institute of Professional Studies, Delhi, India.

Fernández-Caramés, T. M., & Fraga-Lamas, P. (2018). Towards the Internet of smart clothing: A review on IoT wearables and garments for creating intelligent connected e-textiles. *Electronics*, 7(12), 405. <https://www.mdpi.com/2079-9292/7/12/405>

Júnior, H. L. O., Neves, R. M., Monticeli, F. M., & Dall Agnol, L. (2022). Smart fabric textiles: Recent advances and challenges. *Textiles*, 2(4), 582-605. <https://www.mdpi.com/2673-7248/2/4/34>

4. The future of IoT in Textile Industry: opportunities and challenges

The textile industry is undergoing a radical transformation driven by the adoption of emerging technologies, with the Internet of Things (IoT) at the forefront. As seen before, this technological innovation has the potential to revolutionize not only production processes but also the way resources are managed, products are designed, and consumers interact with brands. From automated machinery control to the creation of smart textiles, IoT is opening up a wide range of possibilities that promise greater efficiency, sustainability, and personalization in an increasingly competitive market.

However, this transformation does not come without challenges, such as the need for initial investment, managing large volumes of data, and adapting the workforce to new technological skills. In this section, we will focus on condensing many of the opportunities and advantages IoT offers to the textile sector, integrating ideas already discussed throughout the course to provide a comprehensive view of its impact. This will set the stage to address the challenges that come with IoT implementation, exploring how the industry can navigate and overcome these hurdles to fully harness its potential.

Opportunities of IoT

Table 11: Future opportunities of the IoT

Category	Opportunities
Operational Efficiency	Automation of production processes to reduce errors and improve efficiency.
	Predictive maintenance of machinery to prevent unplanned downtime.
	Data-driven optimization of manufacturing and supply chain operations.
Cost Reduction	Lower operational costs by minimizing machine downtime and optimizing resource usage.
	Energy savings through smarter monitoring and efficient allocation of resources.
	Reduction of waste in materials and processes, lowering production expenses.
Quality Assurance	Real-time monitoring of production quality to ensure consistency.
	Data analysis to identify inefficiencies and enhance processes.
Sustainability and Resource Management	Enhanced resource tracking to minimize waste of water, energy, and raw materials.
	Support for sustainable practices, including textile recycling and circular economy models.
Smart Textiles and Innovation	Development of smart textiles with embedded sensors for applications in healthcare, sports, and fashion.
	Innovation in interactive and customizable garments that respond to environmental changes or user inputs.
Customer Experience	Improved customer experience through personalized services and data-driven product recommendations.
	Transparency in product origins and lifecycle through technologies like blockchain and smart tags.

Market Adaptability and New Business Models	<p>Access to new business models such as rental services or IoT-enabled connected products.</p> <p>Faster adaptation to market changes using real-time data and analytics.</p>
--	--

4.1. Challenges of IoT

While the **Internet of Things (IoT)** offers immense opportunities for **innovation** and **efficiency** in the textile industry, its adoption is not without challenges. The implementation of IoT technologies requires **significant investment**, careful planning, and a **strategic approach** to overcome technical, economic, and social hurdles. From managing the vast amounts of **data** generated by connected devices to addressing **cybersecurity vulnerabilities** and ensuring **compatibility** with existing systems, businesses must navigate a **complex landscape** to harness IoT's full potential.

Moreover, these challenges are not limited to **operational issues**; they also extend to broader concerns such as **environmental impact**, **geopolitical inequalities**, and the **ethical implications** of increased surveillance and automation. As the textile industry becomes more interconnected and globalized, understanding and addressing these challenges is essential for **sustainable growth**. The following sections explore the **key obstacles** that organizations face in implementing IoT solutions and highlight the **considerations necessary** for successful integration.

Operational challenges

Operational challenges represent the immediate and practical obstacles that arise during the implementation, usage, and maintenance of IoT technologies within the textile industry. These challenges are closely tied to the core operations of businesses, such as production processes, data management, and infrastructure requirements.

High initial investment:

The implementation of IoT technologies in the textile industry often requires **substantial upfront investment**, which can pose a barrier, especially for small and medium-sized enterprises (SMEs). Costs associated with purchasing IoT devices, installing sensors, upgrading existing machinery for compatibility, and developing software solutions can quickly add up. Moreover, the return on investment (ROI) is typically realized over the long term, as IoT systems are designed to improve efficiency and reduce costs incrementally. This delay in ROI can make it challenging for businesses with limited budgets to justify the expense, slowing down the adoption of these transformative technologies.

Data management and Cybersecurity:

IoT devices generate **large volumes of data** that must be collected, processed, and analyzed to deliver actionable insights. Managing this influx of information requires robust data storage solutions and advanced analytics capabilities, which can be resource intensive. Additionally, the interconnected nature of IoT systems makes them **vulnerable to cyberattacks**. A breach in one device can compromise the entire network, leading to potential production halts, loss of sensitive information, and reputational damage. Ensuring that IoT systems are equipped with **strong cybersecurity measures** is critical, but it adds another layer of complexity and cost.

Integration challenges:

Integrating IoT systems into existing textile production environments often reveals **compatibility issues** with legacy machinery. Many factories operate with equipment that predates modern IoT technology, requiring significant modifications or replacements to establish seamless communication between devices. Beyond hardware, **software integration** and ensuring interoperability between different IoT platforms can complicate the process. Additionally, there is a pressing need for a **skilled workforce** capable of operating, maintaining, and optimizing these systems. Addressing the skills gap is essential, as an unprepared workforce can hinder the effective use of IoT technologies.

Infrastructure dependance:

IoT technologies rely heavily on **robust network infrastructure** to function effectively. High-speed and reliable internet connections are essential for real-time data transmission and system coordination, which may not always be available in certain regions or industrial facilities. Furthermore, IoT devices and their supporting systems often consume **significant amounts of energy**, raising concerns about both operational costs and environmental impact. Developing sustainable energy solutions to support IoT infrastructure is crucial for maintaining operational feasibility and aligning with broader industry sustainability goals.

Broader challenges

Broader challenges extend beyond the immediate technical and operational hurdles of IoT implementation, encompassing larger systemic and structural issues that affect the textile industry. These challenges touch on environmental, social, geopolitical, and ethical dimensions, highlighting the interconnected and foundational nature of IoT's impact in a globalized and evolving industry. Addressing these broader concerns is essential for ensuring that IoT adoption leads to sustainable, equitable, and inclusive growth.

Regulatory and ethical concerns:

The adoption of IoT in the textile industry is heavily influenced by **regulatory frameworks** that govern data privacy, cybersecurity, and device standards. Businesses must ensure compliance with **international laws** such as the General Data Protection Regulation (GDPR) or other regional directives, which can be complex and resource intensive. Additionally, ethical concerns arise from the **collection and use of customer data**. IoT devices often track user behavior or preferences, raising questions about consent, transparency, and accountability. Balancing the need for data-driven insights with privacy protection is a critical challenge that requires robust governance and ethical decision-making.

Cultural and organizational resistance:

Introducing IoT technologies often encounters **resistance to change** within organizations. Employees, accustomed to traditional methods, may view automation and connected devices as disruptive or even threatening. Building a culture that embraces innovation requires **clear communication**, ongoing training, and addressing concerns about job security. At the same time, **leadership buy-in** is essential for driving IoT adoption. Leaders must not only allocate resources but also act as champions of change, fostering a vision of how IoT can enhance operations and competitiveness.

Geopolitical and Global Context and Internationalization of Production:

The global nature of IoT adoption exposes the textile industry to geopolitical inequalities and power dynamics. Access to IoT technologies and infrastructure is often uneven, with developing

countries facing significant barriers in terms of affordability and availability. Global power struggles—such as trade wars, semiconductor shortages, or sanctions—can disrupt the supply chain for critical IoT components. Additionally, inconsistent international regulations and varying infrastructure capabilities make it challenging to standardize IoT systems across borders.

Environmental impact:

While IoT technologies offer opportunities for sustainability, their adoption also poses environmental risks. The increased energy consumption of IoT devices and supporting infrastructure can contribute to carbon emissions, undermining broader sustainability goals. Furthermore, the use of sensors, batteries, and electronic components generates e-waste, which is often difficult to recycle and dispose of responsibly. Businesses must strike a balance by leveraging IoT to optimize resource use while implementing strategies to minimize its ecological footprint, such as investing in renewable energy and sustainable device lifecycles.

Social implications:

The rise of IoT in the textile industry has significant **social consequences**, particularly in terms of employment. Automation driven by IoT technologies can lead to **job displacement**, especially in roles that are repetitive or labor-intensive. At the same time, it creates new opportunities in technical fields, potentially **widening skill gaps** between technologically proficient and unskilled workers. Additionally, IoT systems often involve **worker monitoring** through connected devices, raising ethical concerns about privacy and autonomy. Addressing these social implications requires proactive workforce planning, equitable access to training, and clear policies on ethical IoT use in the workplace.

4.2. References

Meddeb, A. (2023, May). Smart Textile Industry: Threats and Opportunities. In *International Conference on Innovative Textiles & Developed Materials* (pp. 245-264). Singapore: Springer Nature Singapore. https://link.springer.com/chapter/10.1007/978-981-99-7950-9_23